
ISRAEL JOURNAL OF MATHEMATICS ?9 (1992), 23-32 

ON THE SECOND EIGENVALUE 
OF THE DIRICHLET LAPLACIAN 

BY 

L. FRIEDLANDER 

Department of Mathematics, University of California 
Los Angeles, CA 900~-1555" 

ABSTRACT 

The multiplicity of the second eigenvalue of the Dirichlet Laplacian on 

smooth Riemannian surfaces with boundary that satisfy certain convexity 

condition is at most two. The proof is based on variational formulas for 

eigenvalues under the change of the domain. 

1. In troduct ion  

Let ~ be a simply connected bounded submanifold with smooth boundary of an 

open Riemann surface M. We are interested in eigenfunctions of the Laplacian 

in ~ with the Dirichlet's boundary conditions: 

f A u + A u = O  i n ~ ;  
(I.I) 

I u = 0 in 012. 

It is well known that the spectrum of the problem (1.1) is discreet and positive, 

and the smallest eigenvalue ),1 is simple. The second eigenvalue A2 might be 

multiple (and it is in fact multiple in the case of a circle). C.-S. Lin proved in [1] 

that for convex domains in R 2 the multiplicity of A2 is at most 2. 

Let X be a smooth vector field that is defined in a neighborhood of f/. I shall 

assume that X preserves the metric tensor g on M. It means that 

(1.2) £ x g  = o, 
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where / :x  is the Lie derivative. Let v be the field of unit outward normal vectors 

to 0f~. Let 

r~x = {x ~ On: ± (x ,  v)(x) > 0}. 

I say that fl is X-convez if both sets ~ x  are connected, and at least one of them 

is not empty. I shall prove 

THEOREM: Let a simply connected bounded submanifold with smooth boundary 

fl of an open Riemannian surface M is X-convex/or a smooth vector field X 

defined in a neighborhood of fl that satisfies (1.2). Then the second eigenvaJue 

of the problem (1.1) is of multiplicity at most 2. 

Convex domains in R 2 are X-convex for every constant vector field X. Clearly, 

constant vector fields preserve the Eudedian metric. However, there are non- 

convex domains in R 2 that are X-convex for some constant vector field X. The 

theorem can be easily applied for domains in R 2, on the sphere S 2, and on the 

hyperbolic plane tt2. In these cases there exist families of vector fields preserving 

the metric, and the assumption is that fl is convex with respect at least one of 

them. 

The basic tool of proving theorems of such a type is investigating nodal lines 

for the solutions of the problem (1.1). One can find basic fact about nodal lines 

in [1,2]. If u is an eigenfunction, then the nodal line N,  is the closure of the set 

{(z, V) E f l :  u(z, V) = 0}. The Courant nodal domain theorem [3] says that the 

nodal line Nu divides the domain f~ into at most k connected components, where 

k is the number of the corresponding eigenvalue. In the case k = 2 the number of 

subdomains equals exactly 2. From this point I shall discuss only the case k = 2. 

There axe two possible cases: 

(i) N .  N O n #  0 ; 

(ii) N u n  O£t = 0. To prove the theorem, it is sufficient to rule out the second 

possibility (e.g., see [1]). I shall show it for the sake of completeness. 

First, I would like to describe the method of the proof. Assume that  N~ N0fl = 

0. The nodal line Nu divides our domain fl into an internal part ~)+ and an 

external part fl_. Let us move domain fl along the vector field X. By fl(t), 

-~  < * < ,, I denote the image O(t)~, where O(t) is the one-parameter group of 

local isometrics generated by X. Let )~-(t) be the first eigenvalue of the Dirichlet 

Laplacian in n_( t )  = f~(t) - n+.  I claim that 

(1.3) A- ( t )  > ~2- 
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Let ¢+ be the first eigenfunction of the Dirichlet Laplacian in [~+, extended by 

0 in f/_(t), and let ¢_ be the first eigenfunction of the Dirichlet Laplacian in 

fL( t ) ,  extended by 0 in f~+. Let u(x) be a linear combination of ¢+ and ¢_, 

orthogonal to the first eigenfunction of the Dirichlet Laplacian in f~(t). If the 

inequality (1.3) does not hold then 

~(t) lVul2dx <~ )~2 ~(t)  u2dx, 

and this contradicts to the min-max principle (note that ~ and f~(t) are isospec- 

tral). The inequality (1.3) implies 

(1.4) Oh- & (0) = 0. 

In section 2 I shall derive formulas for the first and for the second variations of 

the first eigenvalue of the Dirichlet Laplacian under the change of the domain. 

The formula for the first variation is rather well-known folklore result. In the 

case of an analytic deformation the proof can be found in [4]. In the section 3 I 

shall complete the proof of the theorem. 

2. Variations of  the first eigenvalue of  the Dirichlet Laplacian 

Let M be a smooth open Riemannian manifold of any dimension, and let G be 

a closed submanifold of M with smooth boundary. The dimensions of M and 

G are supposed to be equal. Let V be a smooth vector field, defined in the 

neighborhood of the boundary OG of the manifold G, and let v be the field of 

unit outward normal vectors to OG. For small values of a real variable t manifolds 

with boundary G(t) are defined. These manifolds are bounded by images of OG 
under the flow ~( generated by the vector field V. Let A(t) be the first eigenvalue 

of the Dirichlet Laplacian in G(t). 

LEMMA 2.1: Under the above assumptions, 

(2.1) z ( 0 ) = -  [ 
JoG k a. ] 

where ¢(x) is normalized f~rst eigenfunction of the Dirich/e~ Laplacian in G, (., .) 
is the Riemannian scalar product, and dS is the canonical measure of She induced 
Pdemannian s~ruc~ure on OG. 

Proof: Let us fix notations. We denote by g# the metric tensor on M (with 

lower indices), by g# we denote the metric tensor with upper indices, and g is, as 
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usual, the determinant of the matrix g#. Let T be a small tubular neighborhood 

of OG in M. One can introduce coordinates (s, x ~) in T, where 8 is the distance 

from the point to OG, and x ~ are local coordinates on cOG; the coordinates x ~ are 

constant along geodesics normal to cOG. In these coordinates the metric tensors 

g# and g# are of the form 

° 0 )  
9#  = g # ( s , x ' )  

By p(z') we shall denote the scalar product (V(O, x'), u(z')). 
We shall keep in all computations terms up to the first degree in t. We write 

f( t)  ,,~ g(t) i f / ( t )  -g ( t )  = O(t2). In the coordinates (s,x') the boundary OG(t) 
of G(t) is given by 

(2.2) s = w(x' , t) ,  where w(x' , t )  ~ tp(x'). 

The manifold G(t) is described near OG(t) by the inequality s < w(x', t). Now I 

am going to introduce a diffeomorphism F~: G(t) ~ G. Let a be a small number, 

and let a(v, a, w) be a smooth function of three real variables a > 0, w > - a ,  

and 1" _ w, such that it increases in r ,  and a(r ,  a, w) = r when r < - a .  The 

mapping F~ is identical out of the region Ua = (s > - a } ,  and 

(2.3) F[ ( s ,  x') = (a(s, a, w(x', t)), x') 

in U~,. Let g#(t, a) be the push forward of the metric g# by the diffeomorphism 

F~. The metrics g# and g#(t, a) coincide out of Ua. The first eigenvalue of 

the Dirichlet Laplacian A(t) in G that corresponds to the metric g#(t) equals 

)~(t). Let ¢(t) be the first eigenfunction of A(t). Let g(t) = det g#(t). Operators 

(g(t)/g)l/4A(t)(g(t)/g) -1/4 form a smooth family of selfadjoint operators with 

compact resolvent. Therefore, A(t) is a smooth function of t [5]. One has 

A(t)¢(t) + ,~(t)¢(t) = O, 

and 

A'(O)¢ + A¢'(O) + ~'(0)¢ + ~¢'(0) = O. 

One can take the scalar product (which is induced by the metric g#) of the both 

parts of the last equality with ¢. After integrating by parts one gets the usual 

Rayleigh's formula 

(2.4) )/(0) = - (A ' (0 )¢ ,¢ ) .  
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I need a different representation for ~'(0). One has 

(~(t)¢,¢)= /c~(t)¢'¢~Vcff6dx 

= - fci v¢l fa¢(V¢,V  V Ct)d  
1 =- f lVCl~v~dz-~ f ¢(V¢,W)tv~dx, 

where t¢ = log(g(t)/g), and 

Finally, 

(2.5) 

(re ,  w ) ,  = gi~(t)(O¢lOx')(o~/ox~). 

The value of A~(0) depends neither on the choice of the function a nor on the 

choice of the number  a. To perform all computations it is convenient to make a 

special choice of the function a ,  namely, 

(2.6) ~( . ,  ~, w) = { if T, T < 

o(r  - w)l(~ + w), if ~ >_ -~. 
The only problem is, this function is not smooth, and the corresponding metric 

g#(t) is not continuous. Nevertheless, the formula (2.5) holds if all derivatives 

are treated in the sense of distributions. Rigorously speaking, one can take a 

sequence of smooth functions an converging to the function a in the sense of 

distributions, and then one can take the limit in (2.5). 

Now I am going to compute components of the metric tensor g#(t) in the strip 

V¢ = { - a  < s < 0}. One has 

and 

Hence, 

r tp 
s = a  , ,~r-tp 1 +  

a +tp 

r ~ ( s + t p  1 - a P  ~ s + t p  1 +  . 
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because s - r = O(r). Components of metric tensor g#(t) equal 

g"( t )~  1 -  p . . ~ l - - - p ,  
O" 

( gOa..._t 1+ Y ~ ' )O'zx ' and 

I use the standard convention: summation over repeated indices is always as- 

sumed. The Greek letters are being used to denote tangential coordinates z'. 

The last piece of information we need to apply (2.5), is 

~ = - - l o g ( 1 -  ~ - p ) - l o g d e t ( g # + t p ( l + p ) O g # ' ~  Os J + log det g# 

~p2t ( s h 0g # .,, ~ - tp_Z + ~ }  tr--&-g~'. 

The first term in the right hand side of (2.5) is equivalent to 

/G , VC] 2tv~dz .~ /G , v¢l 2x/~dz - 2~a fc p(z')C~ vffdz 

+ --g~sCa¢~v~dz. 

Here Cs is the s-derivative, and ¢7 is x't-derivative. The second term in the right 

hand side of (2.5) is equivalent to 

i~ Jo~ [ p(x')~/~(-~, x,)¢(-~,x')~.(-., x')dx' + t/~, ~(v~, W)v~dx, 

where 

to . . . .  1 + trg g#. 
a 2 

Therefore, 

~'(0) = - ;  p(~')C,~v~d~ + - p(~')C(-~,~')C,(-~,~')v~d~' 
G 

- ~ g~'~(1 + S)p.tCs¢~v/ffdz + ~ p ( l +  s'~Og~'¢~) --~s~p~p.tvgax . . . .  

+ [ ¢(v¢, W)v~d~. 
Jv. 
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The right hand side of the last formula does not depend on a. Limits of the last 

three terms equal 0 when a ~ 0. The first and the second terms have the limits 

and foap(~'lv~&' -2 foa p(~')v~&' 

respectively. Finally, 

A'(O) = - fOG P(X')v~dz" II 

Now I am going to derive a formula for the second derivative of A. From this 

point d imM = 2. One can rewrite the formula (2.1) in the form 

(2.1') cv ~ = _ rj010 ( 0~ ~ 2(v ' ~)ds. 

Let W be another vector field that is defined in a neighborhood of OG. Let ~t be 

the family of local diffeomorphisms associated with W. I shall use coordinates 

(s, x') in a neighborhood of OG (see the proof of Lemma 2.1). The vector field 

W has the form (Wn, W,) in these coordinates. The image Ft of OG under the 

mapping ~t is given by the equation 

(2.7) s = ~(~') ~ tw.(o,~'). 

Clearly, the element of the length along Ft equals dS modulo t 2. Therefore, 

(2.8) { ° ¢ ~ c w ( y ,  v)ds cwzv~=- fo (v¢)z~(~)es- foa\~] 
Let G(t) be the domain bounded by Ft, let ¢(t) be the normalized first eigen- 

function of the Dirichlet Laplacian in G(t), and let A(t) be the corresponding 

eigenvalue. I denote by ¢+(t) the function ¢(t), extended by 0 outside G(t). By 

' I shall denote the t-derivative. One has 

(2.9) (A + A)¢+ = -X6r(o, 

where X = {9¢/0v, and 6r( 0 is the delta-function supported on F(t) = Ft. Let us 

equate derivatives of both parts of (2.9) at t = 0: 

(2.10) (A + A)/:W¢+ + (/:WA)¢+ = -(£WX)$aG -- X(~.w6aG). 
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I shall take only vector fields W such that 

(2.11) f (O¢~2(W,v)dS:O. 
Joak &'] 

In this case the second term from the left hand side of (2.10) equals 0. Denote 

by w the function £wX. The distribution that appears in the left hand side of 

(2.10) maps a function f into 

Of dS (2.12) - foawfdS-  foaXW.(s)-ff~v . 

Therefore, w is the normal derivative of the solution v of the equation 

(/x + A)v = 0 

with the boundary condition 

~(0,,') = - w , , ( , ' ) x  = - w e .  

I shall write w = -N(A)(W¢); N(A) is the Neumann operator for A + A. This 

operator is defined only on the subspace H0 of functions that are orthogonal to 

O¢/Ov. The function We belongs to this subspace because of (2.11). Now we 

can write the first term from the right hand side of (2.8) in the form 

(2.13) 2(v¢, N(A)(W¢)). 
The next step is to simplify the second term from the right hand side of (2.8). 

Recall that (Wr, W,) are components of W in normal (x',s) coordinates. Let 

(Vr, V,) be components of the vector field V. The outward normal vector to the 

curve r ,  is of the form 
0 _tOW"(z' )  0 

vt ~ ~ Oz' Oz' 

(see (2.7)). Therefore, 

( v , , v ( x ' , t w . ( x ' ) ) ) ~  v . (o ,x ' )+  t ( ~"  (0, ~')w.(0,x')- v~(o, ~')~-~ (0, x')). 

Hence the second term from the right hand side of (2.8) equals 

(2.14) "~(V,W) = -  a -~v \ Ov - V , . ~ ] d S  

We have proved 
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LEMMA 2.2: Let V and W be vector t]elds defined in a neighborhood of OG, and 

let they satisfy (2.11). Then 

(2.15) £.w£.vA = 2(N(A)(W¢),  V¢)  + -(V, W), 

where E(V, W) is defined by (2.14). 

3. P r o o f  o f  t h e  t h e o r e m  

Let a domain ft and a vector field X satisfy the assumptions of the theorem. 

Assume that the dimension of the eigenspace M of the Dirichlet Laplacian in ~q 

that corresponds to the second eigenvalue is at least 3. Then there exists ¢ E M 

such that 

(3.1) Arc n (gf~ = 0. 

In fact, if (3.1) is not satisfied for any function ¢ E M, ¢ ~ 0, then sets 

S~ = {z ~ Of~ : O¢/Ov >_ 0} 

are nonempty closed intervals (S¢ may be equal to a point). This easily follows 

from the Courant 's nodal line theorem (e.g., see [1]). We identify the boundary 

0f~ with the standard circle S 1. Fix a point P E Of/. Then any point Q E (gf/ 

corresponds to exp(2~ri]pQj/[O~21) where ]PQI is the distance from P to Q in 

the counterclockwise direction, and [aft[ is the length of 0fL One can assign 

the center of S¢ to any non-zero function ¢ E M. This construction gives rise 

to a continuous odd function M - 0 ~ S 1. The Borsuk-Ulam theorem yields 

dim M < 2. 

Let u E M, and ¢(t)  = ¢ + tu. For small values of ItI one has 

We( 0 n Off = 0. 

Now one can apply Lemma 2.1 to the domain f~_ corresponding to ¢(t) ,  and 

to a vector field that equals X in a neighborhood of 0f~, and that equals 0 in a 

neighborhood of N¢( 0. Formulas (1.4) and (2.1) imply 

(3.2) f0 (0¢ Ou~ 2 o ~ + t ~ )  (x, . )dS=O 
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for all sufficiently small t. Therefore, 

(3.3) fort a~ Ou "X, v) = O. 

The assumption of X-convexity of ~ yields the existence of two points P, Q E a ~  

such that (X, v) does not change the sign on both arcs connecting 19 and Q. Note 

that the signs of (X, v) on these arcs are different. In fact, if the scalar product 

(X, v) does not change the sign on Of / then  (X, v) - 0 because d the formula 

(3.9.) with t = 0 (cg~b/Ov # 0). If dim M _> 3, one can find a function u E M with 

Ou Ou N(P) =N(0)=0, 
and the product (X, v)Ou/av has the constant sign on 0O (see Lemma 1.2 in 

[1]). Therefore, for this choice of the function u the integrand in (3.3) does not 

change the sign, and it does not equal 0 identically (see Lemma 1.3 in [1]). This 

contradiction completes the proof. | 
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